采用SPFA算法,求解图中两点间的最短距离
#include <bits/stdc++.h>
#define io cin.tie(0), cout.tie(0), ios::sync_with_stdio(false)
#define LL long long
#define ULL unsigned long long
#define EPS 1e-8
#define INF 0x7fffffff
#define SUB -INF - 1
using namespace std;
const int N = 100005, M = 200005;
int n, m;
int pre[N];
void print_path(int s, int t)
{
if (s == t)
{
printf("%d", s);
return;
}
print_path(s, pre[t]);
printf("%d", t);
}
int head[N], cnt;
struct
{
int to, next, w;
} edge[M];
void init()
{
for (int i = 0; i < N; i++)
head[i] = -1;
for (int i = 0; i < M; i++)
edge[i].next = -1;
cnt = 0;
}
void addedge(int u, int v, int w)
{
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
}
int dis[N];
bool inq[N];
int Neg[N];
int spfa(int s)
{
memset(Neg, 0, sizeof(Neg));
Neg[s] = 1;
for (int i = 1; i <= n; i++)
{
dis[i] = INF;
inq[i] = false;
}
dis[s] = 0;
queue<int> Q;
Q.push(s);
inq[s] = true;
while (!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to, w = edge[i].w;
if (dis[u] + w < dis[v])
{
dis[v] = dis[u] + w;
pre[v] = u;
if (!inq[v])
{
inq[v] = true;
Q.push(v);
Neg[v]++;
if (Neg[v] > n)
return 1;
}
}
}
}
return 0;
}
int main()
{
while (~scanf("%d%d", &n, &m))
{
init();
if (n == 0 && m == 0)
return 0;
while (m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
}
spfa(1);
printf("%d\n", dis[n]);
printf("path:");
print_path(1, n);
printf("\n");
}
return 0;
}